Helicases and human diseases
نویسندگان
چکیده
Recent progress in pharmaceutical sciences has made it possible for us to live longer and longer. For example, antibiotics and vaccines have been developed that were successfully administered to patients with infectious diseases. A number of effective drugs for specific diseases could be purified from natural resources or created by chemical synthesis, and recent recombinant DNA technologies have brought about antibody-drugs. It seems increasingly possible that a treatment for every disease could be established in the near future. Nevertheless, prevention or remedies for inherited age-related diseases, including cancer, have not yet been completely established. However, recent progresses in human genetics and molecular biology revealed that premature aging is caused by mutations on DNA helicase encoding genes (Bernstein et al., 2010). These exciting findings have encouraged scientists to research mechanisms of the age-related diseases. DNA/RNA helicases are enzymes that unwind DNA/DNA, DNA/RNA, and RNA/RNA duplexes to execute and regulate DNA replication, recombination, repair, and transcription (Patel and Donmez, 2006). To date, numerous genes have been identified to encode helicases. Importantly, genetic studies have revealed that mutations in some of these genes are associated with certain human diseases, including Xeroderma Pigmentosum (XP), Cockayne Syndrome (CS), and Werner Syndrome (WS) (Puzianowska-Kuznicka and Kuznicki, 2005). Given that helicases play an important role in the regulation and maintenance of chromosomal DNAs, it might not be so difficult to understand that their dysfunction leads to unfavorable states. Nuclear events, such as nucleotide excision repair (NER), transcription coupled repair (TCR), and telomere maintenance, are thought to be individually affected by XPB/XPD, CSA/CSB and WRN helicases, respectively (Table 1). Because epigenetic changes and disruption of chromosomal integrity have been strongly suggested to correlate with cellular senescence, these helicases may be important factors to regulate aging and age-related diseases. Despite great efforts being made to elucidate the properties of helicases on a molecular and cellular level, it seems that the gap from molecule to patient is still distant. In this research topic, authors have described and discussed the forefront of the helicase studies. It is very important to establish a molecular model of how helicases interact with DNA repair machinery. In the research topic, the properties of the FANCJ (BRIP1) that affect cancer and Fanconi Anemia (FA) development have been summarized (Brosh and Cantor, 2014). In order to assess the mechanisms of diseases, including cancer, which are caused by dysfunctions of helicases, Table 1 | Helicases that associate with human diseases.
منابع مشابه
Bloom's syndrome workshop focuses on the functional specificities of RecQ helicases.
Human cells express five DNA helicases that are paralogs of Escherichia coli RecQ and which constitute the family of human RecQ helicases. Disease-causing mutations in three of these five human DNA helicases, BLM, WRN, and RECQL4, cause rare severe human genetic diseases with distinct clinical phenotypes characterized by developmental defects, skin abnormalities, genomic instability, and cancer...
متن کاملDNA Helicases and Human Disease
HELICASES ARE MOTOR PROTEINS THAT UTILIZE THE ENERGY DERIVED from the hydrolysis of nucleoside triphosphates (NTP/dNTP) to disrupt hydrogen-bond interactions in doubleor multi-stranded DNA and RNA. All known helicases are recognized to have at least two intrinsic enzymatic activities: (1) NTP/dNTP-dependent nucleic acid unwinding and (2) DNA/RNA-dependent NTP/dNTP hydrolysis. Unwinding of DNA a...
متن کاملMechanisms of RecQ helicases in pathways of DNA metabolism and maintenance of genomic stability.
Helicases are molecular motor proteins that couple the hydrolysis of NTP to nucleic acid unwinding. The growing number of DNA helicases implicated in human disease suggests that their vital specialized roles in cellular pathways are important for the maintenance of genome stability. In particular, mutations in genes of the RecQ family of DNA helicases result in chromosomal instability diseases ...
متن کاملHuman premature aging, DNA repair and RecQ helicases
Genomic instability leads to mutations, cellular dysfunction and aberrant phenotypes at the tissue and organism levels. A number of mechanisms have evolved to cope with endogenous or exogenous stress to prevent chromosomal instability and maintain cellular homeostasis. DNA helicases play important roles in the DNA damage response. The RecQ family of DNA helicases is of particular interest since...
متن کاملRecQ helicases: suppressors of tumorigenesis and premature aging.
The RecQ helicases represent a subfamily of DNA helicases that are highly conserved in evolution. Loss of RecQ helicase function leads to a breakdown in the maintenance of genome integrity, in particular hyper-recombination. Germ-line defects in three of the five known human RecQ helicases give rise to defined genetic disorders associated with cancer predisposition and/or premature aging. These...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015